
Simulating Histories for Dynamic Microsimulation Models

Jinjing Li Maastricht Graduate School of Governance Cathal O' Donoghue Teagasc RERC, Ireland

"We've done a computer simulation of your projected performance in five years. You're fired." by J.P. Rini

Microsimulation Has High Data Requirement

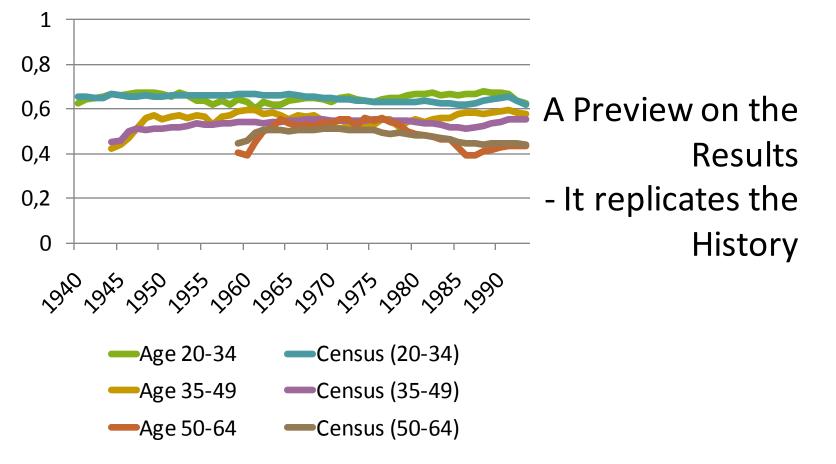
- What Dataset do we Need for Dynamic Microsimulation
 - Age, Education, Job, Earnings
 - Marriage, Children, Health, Spatial Information
 - Other relevant Information (everything)
 - Life time information
- What dataset Do we Have
 - Cross sectional Survey/Census
 - Panel Survey
 - Administrative data
- Difficult to choice (Cassells et al, 2006; Zaidi and Scott, 2001; Zaidi 2001,2004)

The Dilemma of the Base Dataset

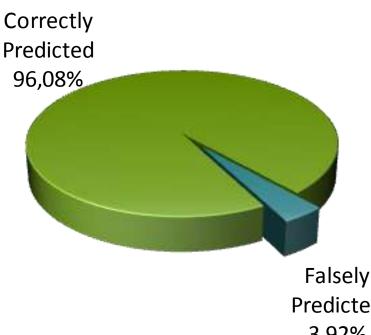
Statistical Matching

- DYNASIM (CPS with Administrative data)
- DYNASIM3 (SIPP with PSID)
- PENSIM2 (Mix of FRS, BHPS, LLMDB)
- Synesthetic Simulation
 - DYNANCAN
 - CORSIM

What are the Alternatives


Our model LIAM

- A Dynamic MSM for life cycle pension analysis and reform evaluation based on LII (Living in Ireland Survey, similar to ECHP/EU-SILC)
- Require demographic info(age, education attainment, marriage etc), employment info, and pension info
- Requires history since the potential pensioner's birth year
- Neither method discussed earlier meets the requirement of because
 - No admin record goes back to 40s in Ireland
 - Need consistent history for pension projection


LIAM Model and its Data Requirement

- Has to be consistent with current individual profile
- Should be close to what actually happened in the history for all key variables
- Has to be primarily based on LII and other public statistics (mainly macro)

Historical recreation seems to be the only workaround Simulated Proportion of In-Work Population Over History By Age

Irish State Contributory Pension has requirements on length, density, and timing.

A Preview on the Results - It replicates the **State Pension** Eligibility

Falsely Predicted 3,92%

- Exploit the Retrospective Variables
 - the year when they started their current job and the job duration
 - the year and age when they first started to work
 - the number of years spent in full-time education, employment, unemployment, illness or disability
 - home caring or retirement since the age of 10
 - the year when they became unemployed, if currently unemployed

How the History was Modelled

Exploit the Retrospective Variables Further

- Maternity leave
- Recent unemployment prior to the base year
- Some pension membership information

How the History was Modelled

Deterministic Simulation

 Directly calculated from retrospective variables

Semi-Stochastic Simulation

 Indirectly calculated from retrospective variables in combination with assumptions and external Data

Stochastic Simulation

 Microsimulation in a reversed timeline A Mixtures of Methodologies in Back Simulation: Three Steps

Discrete Variable Simulation

- Model Requirement: Able to capture stable individual effect
- A logit variation of Mundlak (1978)

$$\log(p_i) = \alpha + \beta X_i + \varepsilon_i$$

 $\varepsilon_{it} = u_i + v_{it}$

 Extract individual effects (u_i) from the panel residuals

> $log(p_i) = \alpha + \beta X_i$ $+ d(\overline{\varepsilon_{it}}) + \varepsilon_i$

- Continuous Variable Simulation
 - Random-effects Panel estimates

Back Simulation Estimation Method

- More difficult than forward simulation due to the extra constraints
- To simulation pension eligibility correctly, you need to get length, density, and timing correct in career profile
- Dual alignments (Crosssectional and Longitudinal)
 Design

Alignment Implement of Back Simulation

Cross-sectional (and Partial longitudinal) Alignment on Yearly Basis

- Continuous variables (ratio)
- Discrete variables (rank the probability on condition of the longitudinal consistency)
- Further Adjustment is still required for complex longitudinal alignment
 - e.g. Pension eligibilities
 - Longitudinal statistics is required

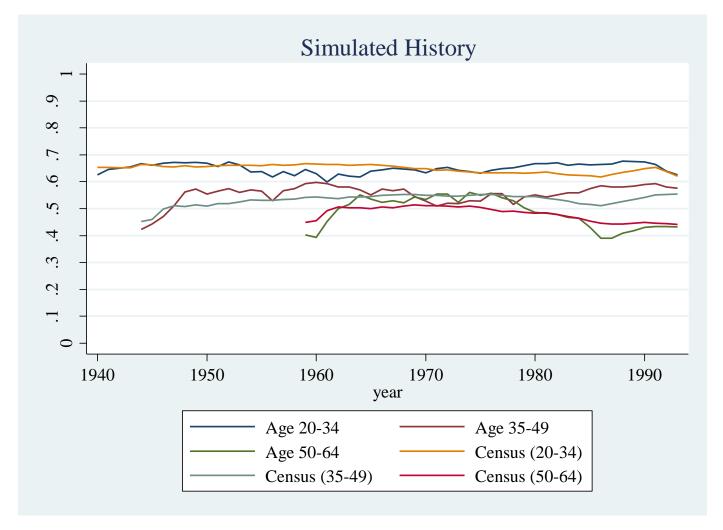
How did we Align the Data

Longitudinal Alignment

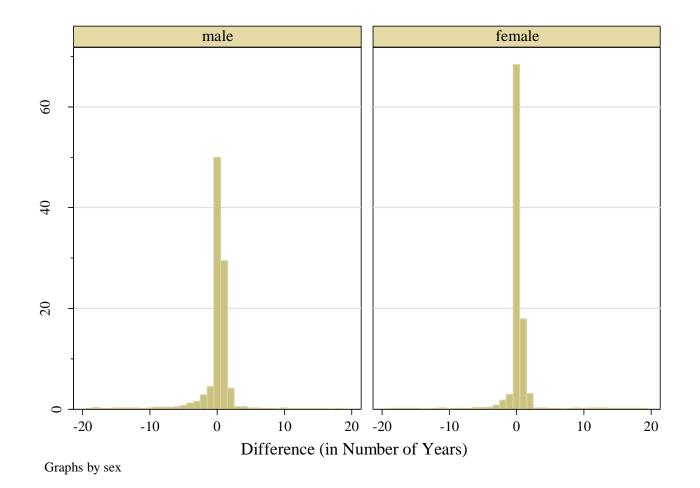
An example: State Contributory Pension

- Introduced in 1953 for employed, 1988 for self employed
- Need to pay the first contribution before certain age (depends on cohort)
- Requires a contribution density of at least 10/52

Year	1950	1951	1952	1971	1972	1973	Total Years of Work	Rate	Simulated Eligible	Actual Eligibility
Individual A		0		0	С		3	33.33%	Yes	No
Individual B		0			0	•	4	66.67%	Yes	Yes
Individual C				0	0	0	3	00.00%	No	Yes
Yearly Aggregate	3	1				2			(1/3 cc	orrect)


Longitudinal Alignment

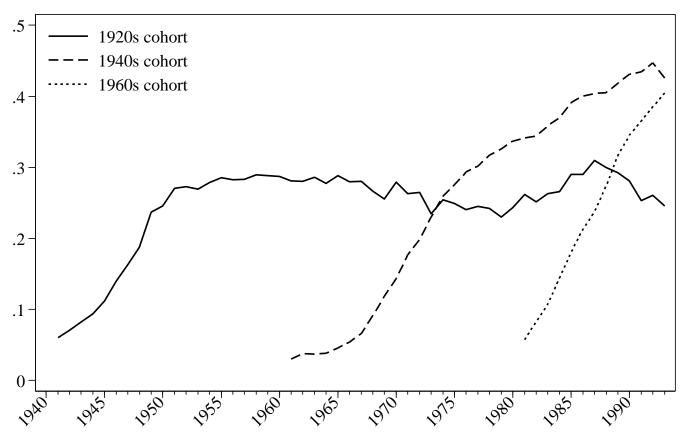
An example: State Contributory Pension


- Introduced in 1953 for employed, 1988 for self employed
- Need to pay the first contribution before certain age (depends on cohort)
- Requires a contribution density of at least 10/52

Year	1950	1951	1952	1971	1972	1973	Total Years of Work	Rate	Simulated Eligible	Actual Eligibility
Individual A				0	0	0	3	00.00%	No	No
Individual B		0			0		4	66.67%	Yes	Yes
Individual C		0		0	0		3	33.33%	Yes	Yes
Yearly Aggregate	3	1	3	1	0	2			(3/3 cc	orrect)

Simulated History Result

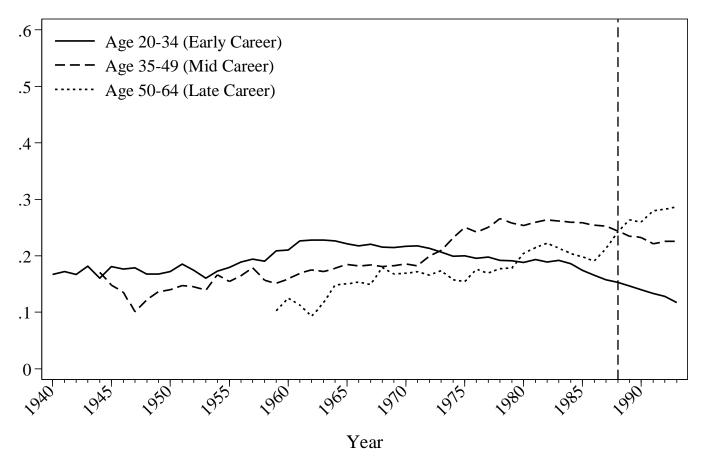
Simulated History Result


Simulated History Result

Percentage of Correctly Simulated Eligibility

Pension Type	Correctly Simulated	Number of Observations*			
Contributory State Pension	96.08%	9343			
Occupational Pension	98.25%	10030			
Private Pension	97.36%	1706(Year 2000 onwards)			

Some Other Findings

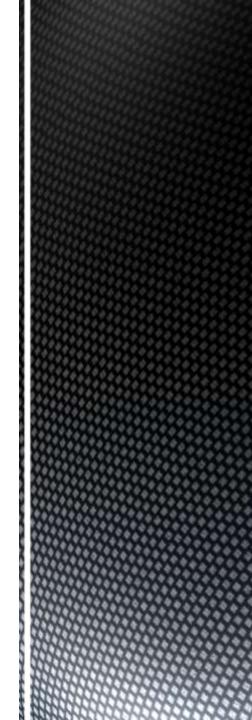

Occupational Pension Participation by Cohort

year

Some Other Findings

Private Pension Participation by Age

1988 is the year when the last major state pension reform took place during the simulated time period


- A generic back simulation framework which could be adaptive to many datasets
 - Eg. ECHP, BHPS, GSOEP, FFS
- Possibilities of life cycle based modelling simulation without the scared long panel

The Implication of Simulated Historical Panels

- An example: Option Value Based Retirement Choice Models
 - Option value (Stock & Wise, 1990) could be modelled on utility maximizing process
 - It requires data (past & future)
 - The dynamics of pension in the past and project future could be explicitly modelled
 - Could incorporate Household Based Behaviour

The Implication of Simulated Historical Panels

Thank you

